User Tools

Site Tools


imal

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
imal [2023/06/28 09:13]
trynke
imal [2025/02/05 14:49] (current)
Line 14: Line 14:
   * lung nodules ​   * lung nodules ​
  
-Imalife ran from 2017 to 2022.+Participants with a lung nodule between 100-300 mm3 (~5,4% of all scanned participants) were invited for a repeat CT scan after 3-4 months for scientific purposes, ​to evaluate natural evolution of lung nodules in the general population.
  
 ===== Subcohort ===== ===== Subcohort =====
  
-Imalife ​was performed in ~12.000 Lifelines [[cohort|participants]] of 45 years who completed a [[pulmonary function test]]. ​+Imalife ​ran from 2017 to 2022. The assessments were performed in ~12.000 Lifelines [[cohort|participants]] of 45years who completed a [[pulmonary function test]].\\ 
 +To ensure sufficient participants in the older age groups, selection criteria were later adjusted to 60+ and, in the final phase, 75+.   
  
 ===== Publications using Imalife data ===== ===== Publications using Imalife data =====
  
-  * Xia, C et al. (2019) Cardiovascular Risk Factors and Coronary Calcification in a Middle-aged Dutch Population. Journal of Thoracic Imaging 36(3): 174-180 +  * Xia, C et al. (2019) ​[[https://​journals.lww.com/​thoracicimaging/​fulltext/​2021/​05000/​cardiovascular_risk_factors_and_coronary.6.aspx|Cardiovascular Risk Factors and Coronary Calcification in a Middle-aged Dutch Population]]. Journal of Thoracic Imaging 36(3): 174-180 
-  * Van den Oever L.B. et al. (2020) Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium. European Journal of Radiology 129, 109114 +  * Van den Oever L.B. et al. (2020) ​[[https://​linkinghub.elsevier.com/​retrieve/​pii/​S0720-048X(20)30303-X|Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium]]. European Journal of Radiology 129, 109114 
-  * Xia, C et al. (2021) High-pitch dual-source CT for coronary artery calcium scoring: A head-to-head comparison of non-triggered chest versus triggered cardiac acquisition. Journal of Cardiovascular Computed Tomography 15(1): 65-72 +  * Xia, C et al. (2021) ​[[https://​linkinghub.elsevier.com/​retrieve/​pii/​S1934-5925(20)30145-3|High-pitch dual-source CT for coronary artery calcium scoring: A head-to-head comparison of non-triggered chest versus triggered cardiac acquisition]]. Journal of Cardiovascular Computed Tomography 15(1): 65-72 
-  * Lancaster, H et al. (2021) Seasonal prevalence and characteristics of low-dose CT detected lung nodules in a general Dutch population. Sci Rep 11(1): 9139 +  * Lancaster, H et al. (2021) ​[[https://​www.nature.com/​articles/​s41598-021-88328-y|Seasonal prevalence and characteristics of low-dose CT detected lung nodules in a general Dutch population]]. Sci Rep 11(1): 9139 
-  * Cai, J. et al. (2022) CT characteristics of solid pulmonary nodules of never smokers versus smokers: A population-based study. Eur J Radiol 154:​110410 +  * Dudurych, I. et al. (2021) [[https://​eurradiolexp.springeropen.com/​articles/​10.1186/​s41747-021-00247-9|Creating a training set for artificial intelligence from initial segmentations of airways]] Eur Rad Exp 5, 54 
-  * Wisselink, H. et al. (2023) Predicted versus CT-derived total lung volume in a general population: The ImaLife study. Plos ONE 18(6):​e0287383 +  * Cai, J. et al. (2022) ​[[https://​www.sciencedirect.com/​science/​article/​pii/​S0720048X22002601?​via%3Dihub|CT characteristics of solid pulmonary nodules of never smokers versus smokers: A population-based study]]. Eur J Radiol 154:​110410 
-  * Dudurych, I. et al. (2023) Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction. Eur Radiol in press+  * Wisselink, H. et al. (2023) ​[[https://​journals.plos.org/​plosone/​article?​id=10.1371/​journal.pone.0287383|Predicted versus CT-derived total lung volume in a general population: The ImaLife study]]. Plos ONE 18(6):​e0287383 
 +  * Dudurych, I. et al. (2023) ​[[https://​link.springer.com/​article/​10.1007/​s00330-023-09615-y|Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction]]. Eur Radiol ​ 33, 6718–6725 
 +  * Wisselink, H et al (2023) [[https://​www.sciencedirect.com/​science/​article/​pii/​S0720048X23000232?​via%3Dihub|CT-based emphysema characterization per lobe: A proof of concept]] Eur J Rad 160, 110709 
 +  * Cai, J et al. (2024) [[https://​www.ncbi.nlm.nih.gov/​pmc/​articles/​PMC11154756/​|Who is at risk of lung nodules on low-dose CT in a Western country? A population-based approach]] ERJ Open 63(6): 2301736 
 +  * Sourlos, N. et al. (2024) [[https://​www.ncbi.nlm.nih.gov/​pmc/​articles/​PMC11102890/​|Effect of emphysema on AI software and human reader performance in lung nodule detection from low-dose chest CT]] Eur Radiol Exp 8(1):63 
 +  * Dudurych I et al. (2024) [[https://​pubs.rsna.org/​doi/​epdf/​10.1148/​radiol.232677|Low-dose CT–derived bronchial parameters in individuals with healthy lungs]] Radiology 311(3):​e23267  
  
 ===== Variables ===== ===== Variables =====
imal.1687936432.txt.gz · Last modified: 2025/02/05 14:49 (external edit)